

ALL RECOMMENDATIONS (continued from P.3)

Resumption of ART After Treatment Interruption

- Although drug resistance may not be present in all cases, when reinitiating ART after an interruption, clinicians should identify factors that may have contributed to potential selection of drug resistance, including:
 - Reason for a treatment interruption, i.e., strategic or unplanned (A3)
 - The patient's plasma HIV-1 RNA level (viral load) at the time of ART interruption (A2)
 - Duration of the interruption, particularly if agents with long clearance half-lives are being used (A2)
 - Pattern of adherence prior to discontinuation (A2)
 - Existence of any barriers to adherence before the treatment interruption and whether they are still present (A2)
- If the factor(s) related to interruption confer a low likelihood of emergent resistance, the clinician should recommend resumption of the previously tolerated ART regimen as soon as possible. (A2)
- If the factor(s) related to interruption confer a high likelihood of emergent resistance, the clinician should recommend an appropriate ART regimen (based on assessment above) as soon as possible, with subsequent adjustment based on review of resistance test results. (A2)
- If a patient had a detectable viral load (HIV RNA ≥ 50 copies/mL) before treatment interruption, the clinician should:
 - For interruptions < 4 weeks, obtain a plasma genotypic resistance test as soon as possible (A2)
 - For interruptions ≥ 4 weeks, review all available resistance test results and previous treatment regimens (with reasons for discontinuation), assess current comorbidities and medications, and, if no or incomplete results are available, obtain a proviral DNA genotype test (A3)

Use this code with your phone's QR code reader to go directly to a mobile-friendly version of the guideline.

This **1/4-Folded Guide** is a companion to the New York State Department of Health AIDS Institute guideline **Second-Line ART After Treatment Failure or for Regimen Simplification**. The full guideline is available at www.hivguidelines.org.

ALL RECOMMENDATIONS (continued from P.2)

Changes to Address Adverse Effects

Effects continued

Changes to Address Drug-Drug Interactions

Drug-Drug Interactions continued

Changes to Simplify Regimens

Simplification continued

Changes Due to Pregnancy

Pregnancy continued

Changes to Simplify Regimens

Simplification continued

Changes to Simplify Regimens

Regimens continued

8 → SELECTED KEY POINTS

- Virologic failure is defined as a confirmed HIV viral load ≥ 200 copies/mL despite a patient's use of recommended ART for at least 24 weeks or an HIV viral load that rebounds to ≥ 200 copies/mL after a patient achieves viral suppression.
- Persistent low-level viremia <200 copies/mL confirmed over a period of at least 1 month may be the cause or result of chronic immune activation and should prompt a clinician to assess for adherence, preexisting resistance, or drug-drug interactions.
- Once underlying drug resistance, potential drug-drug interactions, and adherence have been addressed, persistent low-level viremia may reflect a large viral reservoir size or the consequence of constitutive, post-integration virus production from a single infected clone.
- Identifying and addressing adherence problems causing virologic failure can prevent unnecessary ART intensification. Treatment intensification can further complicate adherence and expose additional classes of ARVs to the risk of resistance development.
- Addition or removal of pharmacokinetic "boosters" or "inducers" can cause adverse effects associated with elevated exposure or withdrawal of concomitant medication. These adverse effects may be falsely attributed to a new ART regimen rather than the need for dose adjustment or modification of the coadministered medication.

ARVs by Level of Genetic Barrier to Resistance (for group M, subtype B HIV)

Low Resistance (single mutation, common)	Intermediate Resistance (1 or 2 mutations, common)	High Resistance (>2 mutations, rarer)
• 3TC	• ABC	• ATV (with COBI or RTV)
• EFV	• CAB	• BIC
• EVG	• DOR	• DRV (with COBI or RTV)
• FTC	• FTR	• DTG
• IBA	• TAF	• ETR
• LEN	• TDF	• MVC
• NVP		
• RAL		
• RPV	• ZDV	

Types of HIV Resistance Tests (All resistance assays are affected by limitations of detection; minor variants may not be present at high enough concentrations to be amplified by the assay.)

Test	Description and Use
Genotype	<ul style="list-style-type: none"> • Assesses mutations in the HIV RNA genes that encode enzymes targeted by ARVs: RT, PR, INT • Algorithms interpret the effect of mutations on ARV efficacy • At diagnosis, when a patient has incomplete virologic response to ART, or when viral rebound occurs • Has maximal utility if plasma HIV-1 RNA level (viral load) is ≥ 500 to 1,000 copies/mL • May not detect all RAMs
Phenotype	<ul style="list-style-type: none"> • Assesses the effect of HIV genes on the ARV concentration required to inhibit viral growth compared with wild-type (nonmutant) virus • Estimates a fold change • Historically used to help assess the effect of the interplay of multiple RAMs on viral growth • Supplanted by more comprehensive genotypic interpretation algorithms
Proviral DNA genotype (archived genotype)	<ul style="list-style-type: none"> • Assesses mutations in the HIV RNA genes that encode enzymes targeted by ARVs: RT, PR, INT • Algorithms interpret the effect of mutations on ARV efficacy • In patients who have detectable HIV viral load <500 to 1,000 copies/mL or below the limit of quantification • When changing an ART regimen for simplification or intolerance in patients with no prior resistance test results • In patients who have stopped taking ART for >4 weeks with no or incomplete prior resistance test results • May not detect all RAMs in proviral DNA, or may report RAMs from non-replication-competent viruses • Use an assay that accounts for host APOBEC-generated hypermutation patterns
Tropism test	<ul style="list-style-type: none"> • Assesses the effect of HIV RNA (or proviral DNA) gp120 on the coreceptor(s) used for viral attachment: CCR5, CXCR4, or mixed/dual • Treatment-experienced patients for whom a coreceptor antagonist is being imminently considered • RNA tropism test can be used with viral loads $\geq 1,000$ copies/mL; proviral DNA test can be used for viral loads $<1,000$ copies/mL

Genotypic Resistance Testing Based on Viral Load

HIV RNA Level (Viral Load)	Indicated Genotypic Resistance Test
0 to 500 copies/mL	HIV proviral DNA genotype (RT, PR, INT) or phenotype (tropism)
500 to 1,000 copies/mL	HIV RNA genotype (RT, PR, INT) or phenotype (tropism) at assay amplification threshold; may use HIV proviral DNA test if nonamplifiable
$\geq 1,000$ copies/mL	HIV RNA genotype if currently or recently (within 4 weeks) on ART; DNA proviral genotype may be considered for patients who are currently not taking ART but have in the past

ART Options After First-Line Treatment Failure With Single-Class Drug Resistance [a,b]

Failed First-Line Regimen Drug Classes	Classes and Medication Options for Switch
2 NRTIs + 1 NNRTI [a]	<ul style="list-style-type: none"> • 2 NRTIs + 1 boosted PI: <ul style="list-style-type: none"> - TAF/FTC/DRV/COBI (single tablet) - TAF/FTC + DRV/RTV • 2 NRTIs + 1 INSTI: <ul style="list-style-type: none"> - TAF/FTC/BIC (single tablet) - TAF/FTC + DTG
2 NRTIs + 1 PI [a]	<ul style="list-style-type: none"> • 2 NRTIs + 1 INSTI: <ul style="list-style-type: none"> - TAF/FTC/BIC (single tablet) - TAF/FTC + DTG • 1 INSTI + 1 NNRTI: RPV/DTG (single tablet) • 2 NRTIs + 1 fully active boosted PI
2 NRTIs + 1 INSTI [a]	<ul style="list-style-type: none"> • 2 NRTIs + 1 boosted PI: <ul style="list-style-type: none"> - TAF/FTC/DRV/COBI (single tablet) - TAF/FTC + DRV/RTV
Multiclass	<ul style="list-style-type: none"> • 2 NRTIs + 1 INSTI + 1 boosted PI +/- 1 NNRTI (based on genotype): <ul style="list-style-type: none"> - Consider: MVC [c], FTR, IBA, LEN, ETR, DOR, RPV, TPV

Notes: a) Single-class resistance, with no major NRTI RAMs other than M184V. b) Consider use of the ARV selection tool HIV-ASSIST. c) If current tropism assay indicates exclusive R5 tropic virus.

Common Adverse Effects Associated With ARVs

NRTIs	NNRTIs	PIs	INSTIs
• ABC [a]: Cardio-vascular disease; hypersensitivity	• DOR : CNS effects	• Class effect [b]: Increased cholesterol	• Class effect [b]: Weight gain
• DDI, d4T, ZDV : Mitochondrial toxicity; lipodystrophy; lactic acidosis	• EFV : Hepato-toxicity; vitamin D deficiency; CNS effects; skin reactions; depression; morning somnolence	• [c] : Increased triglycerides	• BIC : Effects on the measure of eGFR
• TAF : Weight gain; increased lipids	• NVP : Hepato-toxicity; hypersensitivity	• [c] : Increased glucose, lipodystrophy	• DTG : CNS effects; effects on the measure of eGFR
• TDF : Proximal renal tubule injury; decrease in bone mineral density	• RPV : CNS effects; skin reactions; effects on the measure of eGFR	• ATV : Nephrolithiasis; renal insufficiency; hyperbilirubinemia	• EVG/COBI : Increased lipids; effects on the measure of eGFR
		• DRV : Cardio-vascular disease; skin reactions	
		• LPV/RTV : Cardiovascular disease	

Notes: a) Screen to document that the patient is negative for HLA-B*5701 before use. b) Adverse effects apply to all drugs in this class. c) Especially with RTV and COBI pharmacoenhancement.

Abbreviations: 3TC, lamivudine; ABC, abacavir; ART, antiretroviral therapy; ARV, antiretroviral medication; ATV, atazanavir; BIC, bictegravir; CAB, cabotegravir; CAB/RPV LA, long-acting cabotegravir and rilpivirine; CNS, central nervous system; COBI, cobicitab; d4T, stavudine; DDI, didanosine; DHHS, U.S. Department of Health and Human Services; DOR, doravirine; DRV, darunavir; DTG, dolutegravir; EFV, efavirenz; eGFR, estimated glomerular filtration rate; ETR, etravirine; ETV, entecavir; EVG, elvitegravir; FTC, emtricitabine; FTR, fostemsavir; gp120, envelope glycoprotein 120; HBV, hepatitis B virus; IBA, ibalizumab; INSTI, integrase strand transfer inhibitor; INT, integrase; LEN, lenacapavir; LPV, lopinavir; MVC, maraviroc; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside/nucleotide reverse transcriptase inhibitor; NVP, nevirapine; PI, protease inhibitor; PR, protease; RAL, raltegravir; RAM, resistance-associated mutation; RPV, rilpivirine; RT, reverse transcriptase; RTV, ritonavir; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; TPV, tipranavir; ZDV, zidovudine.