Purpose of This Guideline
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD; May 9, 2023
Writing group: Joseph P. McGowan, MD, FACP, FIDSA; Steven M. Fine, MD, PhD; Samuel T. Merrick, MD; Asa E. Radix, MD, MPH, PhD, FACP, AAHIVS; Lyn C. Stevens, MS, NP, ACRN; Christopher J. Hoffmann, MD, MPH; Charles J. Gonzalez, MD
Committee: Medical Care Criteria Committee
Date of original publication: December 2019
This compendium of immunization recommendations for adults (≥18 years) with HIV was compiled by the New York State Department of Health AIDS Institute (NYSDOH AI) to assist clinical practitioners in New York State who provide primary care to adults with HIV. The goal is to present a single compilation of all routine vaccinations for adults with HIV recommended by the Centers for Disease Control and Prevention (CDC), National Institutes of Health (NIH), HIV Medicine Association (HIVMA) [DHHS 2022], and the Infectious Disease Society of America [Thompson, et al. 2021]. The European AIDS Clinical Society guidelines were also consulted [EACS 2021]. Where a recommendation differs from these source documents, the rationale is provided.
This document also discusses published literature related to specific vaccines and the rationale for recommendations for which there is no consensus among the referenced guidelines, no evidence specific to patients with HIV, or new data have been published.
References
DHHS. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. 2022 Sep 28. https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/whats-new-guidelines [accessed 2022 Sep 30]
EACS. European AIDS Clinical Society guidelines version 11.0. 2021 Oct. https://www.eacsociety.org/media/final2021eacsguidelinesv11.0_oct2021.pdf [accessed 2022 Sep 30]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Considerations and Contraindications
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
RECOMMENDATION |
Immunizations
|
The tables and accompanying discussion in this guideline compile recommendations, vaccination schedules, clinical comments, and sources from the Centers for Disease Control and Prevention (CDC), National Institutes of Health, and HIV Medicine Association guidelines [DHHS 2022], the Infectious Diseases Society of America [Thompson, et al. 2021], and the European AIDS Clinical Society [EACS 2021].
Immunizations against infectious diseases are a particularly important component of care for individuals with HIV. Immunodeficiency reduces natural defenses to vaccine-preventable diseases in people with HIV and places them at increased risk for disease and for severe disease [Thompson, et al. 2021; Crum-Cianflone and Wallace 2014]. However, there is concern that individuals with HIV-associated immunodeficiency may not be able to mount and maintain an appropriate immune response to vaccines and may be harmed by live virus vaccines. The strength of the immune response may be lower in adults with advanced HIV, especially those with CD4 counts <200 cells/mm3 and/or HIV RNA levels (viral loads) ≥200 copies/mL, and shorter in duration than in adults without HIV [Crum-Cianflone and Wallace 2014]. Immunogenicity, vaccine response monitoring, and requirements for additional booster doses for patients with HIV are discussed on pages for individual vaccines.
Inactivated vaccines are generally considered safe, although data are insufficient to rule out rare adverse effects [Kroger, et al. 2022; Thompson, et al. 2021]. Live, attenuated vaccines are contraindicated for patients with CD4 counts <200 cells/mm3, because of the risk of severe reactions in individuals who are immunosuppressed [CDC 1996; Redfield, et al. 1987; CDC 1985; Davis, et al. 1977]. For patients with HIV and CD4 counts ≥200 cells/mm3, inactivated forms of vaccines such as those for polio, influenza, typhoid, and zoster are preferred over the live vaccine options. Live, attenuated vaccines should be administered only when an inactivated version does not exist and the risk of the disease clearly outweighs the theoretical risk of vaccination.
KEY POINTS: USE OF LIVE, ATTENUATED VACCINES |
|
Transient increases in viral load and decreases in CD4 cell count caused by immune system activation have been described after vaccination in patients with HIV in some older studies [Kolber, et al. 2002; Rey, et al. 2000]. The changes are less likely to occur in patients taking antiretroviral therapy and have not been found to have long-term negative effects [Thompson, et al. 2021; Sullivan, et al. 2000]. In people older than 5 years with HIV, effective ART is defined as ART taken for ≥6 months, with a CD4 percentage ≥15% and a CD4 count ≥200 cells/mm3 for ≥6 months [McLean, et al. 2013]. Viral suppression is defined as an HIV RNA level (viral load) <200 copies/mL.
Clinicians should advise their patients with HIV that family members, close contacts, and other household members should receive all age-appropriate vaccinations, including an annual influenza vaccine, to reduce the patients’ exposure to vaccine-preventable diseases [Thompson, et al. 2021; Grohskopf, et al. 2019; Fiore, et al. 2011]. Live, attenuated virus vaccines may be safely administered to close contacts of individuals with HIV, with specific precautions for varicella and rotavirus vaccines. Transmission of live, attenuated virus after vaccination is rare [Thompson, et al. 2021]. However, patients with HIV who lack varicella immunity are advised to avoid direct contact with people who develop a rash after varicella or zoster vaccination. [Thompson, et al. 2021; Fiore, et al. 2011; Cortese and Parashar 2009; Marin, et al. 2007].
The tables in this guideline (for each vaccine listed) present the recommended immunizations for adults with HIV, followed by discussion of each. For complete vaccination recommendations, see the CDC Immunization Schedules and the vaccine manufacturers’ package inserts.
RESOURCE: HOW TO FILE A CLAIM WITH THE VACCINE INJURY COMPENSATION PROGRAM |
|
References
CDC. Disseminated Mycobacterium bovis infection from BCG vaccination of a patient with acquired immunodeficiency syndrome. MMWR Morb Mortal Wkly Rep 1985;34(16):227-228. [PMID: 3920493]
CDC. Measles pneumonitis following measles-mumps-rubella vaccination of a patient with HIV infection, 1993. MMWR Morb Mortal Wkly Rep 1996;45(28):603-606. [PMID: 8676852]
Cortese MM, Parashar UD. Prevention of rotavirus gastroenteritis among infants and children: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2009;58(Rr-2):1-25. [PMID: 19194371]
Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS 2014;28(8):397-410. [PMID: 25029589]
Davis LE, Bodian D, Price D, et al. Chronic progressive poliomyelitis secondary to vaccination of an immunodeficient child. N Engl J Med 1977;297(5):241-245. [PMID: 195206]
DHHS. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. 2022 Sep 28. https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/whats-new-guidelines [accessed 2022 Sep 30]
EACS. European AIDS Clinical Society guidelines version 11.0. 2021 Oct. https://www.eacsociety.org/media/final2021eacsguidelinesv11.0_oct2021.pdf [accessed 2022 Sep 30]
Fiore AE, Fry A, Shay D, et al. Antiviral agents for the treatment and chemoprophylaxis of influenza — recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2011;60(1):1-24. [PMID: 21248682]
Grohskopf LA, Alyanak E, Broder KR, et al. Prevention and control of seasonal influenza with caccines: Recommendations of the Advisory Committee on Immunization Practices – United States, 2019-20 influenza season. MMWR Recomm Rep 2019;68(3):1-21. [PMID: 31441906]
Kolber MA, Gabr AH, De La Rosa A, et al. Genotypic analysis of plasma HIV-1 RNA after influenza vaccination of patients with previously undetectable viral loads. AIDS 2002;16(4):537-542. [PMID: 11872996]
Kroger A, Bahta L, Hunter P. General best practice guidelines for immunization. Best practices guidance of the Advisory Committee on Immunization Practices (ACIP). 2022 Mar 15. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/downloads/general-recs.pdf [accessed 2022 Oct 20]
Marin M, Guris D, Chaves SS, et al. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2007;56(Rr-4):1-40. [PMID: 17585291]
McLean HQ, Fiebelkorn AP, Temte JL, et al. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013;62(Rr-04):1-34. [PMID: 23760231]
Redfield RR, Wright DC, James WD, et al. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N Engl J Med 1987;316(11):673-676. [PMID: 3821799]
Rey D, Krantz V, Partisani M, et al. Increasing the number of hepatitis B vaccine injections augments anti-HBs response rate in HIV-infected patients. Effects on HIV-1 viral load. Vaccine 2000;18(13):1161-1165. [PMID: 10649616]
Sullivan PS, Hanson DL, Dworkin MS, et al. Effect of influenza vaccination on disease progression among HIV-infected persons. AIDS 2000;14(17):2781-2785. [PMID: 11125897]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
COVID-19 Vaccine
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
RECOMMENDATIONS |
COVID-19 Vaccine
——— |
The Pfizer-BioNTech COVID-19 vaccine received full FDA approval for use in adults on August 23, 2021, and the Moderna vaccine received full approval for use in adults on January 31, 2022. The Johnson & Johnson (Janssen) vaccine is available through an FDA EUA, but as of May 5, 2022, its use is limited to certain individuals [FDA(a) 2022].
FDA full approval:
- Pfizer-BioNTech COVID-19 monovalent vaccine (Comirnaty) as a 2-dose primary series
- Moderna COVID-19 monovalent vaccine (Spikevax) as a 2-dose primary series
FDA EUA:
- Pfizer-BioNTech COVID-19 monovalent vaccine as a third primary series dose for immunocompromised individuals
- Pfizer-BioNTech COVID-19 bivalent vaccine as a single booster dose
- Moderna COVID-19 monovalent vaccine as a third primary series dose for immunocompromised individuals
- Moderna COVID-19 bivalent vaccine as a single booster dose
- Novavax COVID-19 vaccine as a 2-dose primary series and as a booster dose for individuals for whom an mRNA vaccine is not accessible, clinically appropriate, or desired
- Johnson & Johnson (Janssen) COVID-19 vaccine as a single primary vaccine dose only for individuals for whom other vaccines are not accessible or clinically appropriate
Universal vaccination: To reduce community transmission and protect those with HIV, this Committee recommends rapid and universal vaccination against COVID-19 for adults (≥18 years old) with HIV, regardless of prior history of COVID-19 infection. The Committee also recommends a third primary dose for people who are immunocompromised as defined by the CDC, which includes people with untreated and advanced HIV, and a single booster dose for all individuals with HIV.
Although safety and immunogenicity data on the available vaccines against SARS-CoV-2 are still evolving, many people with HIV have multiple risk factors for severe COVID-19 infection. For more information, see:
- CDC: COVID-19: Understanding Your Risk
- NYC Health: COVID-19: Prevention and Groups at Higher Risk > People at Increased Risk of Severe illness
- U.S. Department of Health and Human Services: Guidance for COVID-19 and People With HIV
- National Institutes of Health COVID-19 treatment guidelines: Special Considerations in People With HIV
Table 1: COVID-19/SARS-CoV-2 Vaccine for Individuals With HIV ≥18 Years Old (October 2022) See also CDC Adult Immunization Schedule. Vaccines are approved for use by FDA or under FDA EUA [a,b]. Download PDF |
||||
Vaccine | Pfizer-BioNTech COVID-19 vaccines | Moderna COVID-19 vaccines | Novavax COVID-19 vaccine | Johnson & Johnson (Janssen) COVID-19 vaccine [c] |
Type of vaccine | mRNA | mRNA | Protein subunit | Viral vector |
Primary series administration | 2 doses of monovalent vaccine administered ≥4 weeks apart | 2 doses of monovalent vaccine administered ≥4 weeks apart | 2 doses of monovalent vaccine administered ≥3 weeks apart | 1 dose |
Supplemental vaccine administration for immunocompromised patients [d] | A third dose of monovalent vaccine administered ≥8 weeks after dose 2 of initial series | A third dose of monovalent vaccine administered ≥8 weeks after dose 2 of initial series | None | None |
Booster vaccine administration (revaccination) |
1 dose of bivalent Moderna or Pfizer-BioNTech vaccine administered ≥8 weeks after completion of primary series or receipt of last monovalent booster vaccine |
|||
Abbreviations: CDC, Centers for Disease Control and Prevention; EUA, Emergency Use Authorization; FDA, U.S. Food and Drug Administration. Notes:
|
Discussion: COVID-19 morbidity and mortality are increased among individuals of older age and who have comorbidities that put them at high risk of severe disease [Bhaskaran, et al. 2021; Costenaro, et al. 2021; Mirzaei, et al. 2021; Patel, et al. 2021; Tesoriero, et al. 2021; Cooper, et al. 2020; Nandy, et al. 2020; Ssentongo, et al. 2020]. Although initial studies of HIV and COVID-19-related mortality found conflicting results, a World Health Organization report based on results from 37 countries found a 30% increased risk of severe illness at time of hospital admission and high rates of in-hospital mortality (23.1%) for people with HIV [WHO 2021]. Because there is an increased risk of COVID-19 infection, whether due to overlapping comorbidities or disease-specific factors, people with HIV are a high-priority group for vaccination [Mellor, et al. 2021; Patel, et al. 2021; Ssentongo, et al. 2021; Byrd, et al. 2020]. It is unclear whether mixing vaccines confers greater protection than using the same brand and vaccine type for all doses. However, vaccinations should not be delayed in pursuit of a particular vaccine.
For purposes of exposure, contact tracing, and quarantine, and regardless of HIV status, people are considered fully vaccinated after completion of a primary series, but breakthrough infections are possible. People with HIV who are immunocompromised, either from advanced HIV or another cause such as hematologic malignancy, should receive a third (supplemental) dose of the primary vaccine if they originally received the Pfizer-BioNTech or Moderna monovalent vaccine series. This supplemental dose is recommended under the FDA EUA for immunocompromised patients, including those with untreated or advanced HIV (i.e., CD4 count ≤200 cells/mm3, history of an AIDS-defining illness without immune reconstitution, or clinical manifestations of symptomatic HIV) [CDC(d) 2022]. If patients met those criteria at any point during their primary vaccination series, they should be offered a supplemental dose, even if they are no longer immunocompromised at the time of supplemental dose administration.
Administration of a booster vaccine is also recommended for all people with HIV [CDC(d) 2022; FDA(b) 2022].
COVID-19 vaccines have been shown to be safe and highly effective at reducing severe illness, hospitalization, and mortality. Common mild adverse effects include injection site pain, headache, fatigue, myalgias, fever, and nausea. Rarely, more serious allergic reactions can occur. Reports of myocarditis have been reported mostly among young men, mostly after the second dose of an mRNA vaccine, and are mostly mild with spontaneous resolution [CDC(c) 2022]. A rare blood clotting disorder has also been observed with the Johnson & Johnson (Janssen) vaccine in women <50 years old, as well as rare cases of Guillain-Barre Syndrome [Rosenblum, et al. 2022; Xu, et al. 2021]. Because of safety concerns, the FDA limited its authorization of the Johnson & Johnson (Janssen) vaccine to individuals for whom other authorized or approved COVID-19 vaccines are not accessible or clinically appropriate [FDA(a) 2022].
To date, the clinical trials for all 4 vaccines approved under FDA EUA included approximately 1,000 participants with HIV, a number too small to determine efficacy specifically in this population [Dunkle, et al. 2022; Baden, et al. 2021; Sadoff, et al. 2021; Polack, et al. 2020]. Nonetheless, there has been no evidence of decreased vaccine efficacy and no reports of increased vaccine adverse effects in people with HIV. A small study showed that the Pfizer-BioNTech vaccine elicited a strong antibody response in people with HIV [Woldemeskel, et al. 2021].
KEY POINTS |
|
References
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384(5):403-416. [PMID: 33378609]
Bhaskaran K, Bacon S, Evans SJ, et al. Factors associated with deaths due to COVID-19 versus other causes: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet Reg Health Eur 2021;6:100109. [PMID: 33997835]
Bogart LM, Ojikutu BO, Tyagi K, et al. COVID-19 related medical mistrust, health impacts, and potential vaccine hesitancy among Black Americans living with HIV. J Acquir Immune Defic Syndr 2021;86(2):200-207. [PMID: 33196555]
Byrd KM, Beckwith CG, Garland JM, et al. SARS-CoV-2 and HIV coinfection: clinical experience from Rhode Island, United States. J Int AIDS Soc 2020;23(7):e25573. [PMID: 32657527]
CDC(c). Clinical considerations: myocarditis and pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults. 2022 Sep 29. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html [accessed 2022 Oct 25]
CDC(d). COVID-19 vaccines for people who are moderately or severely immunocompromised. 2022 Nov 3. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html [accessed 2022 Oct 25]
Cooper TJ, Woodward BL, Alom S, et al. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Med 2020;21(9):567-577. [PMID: 32671970]
Costenaro P, Minotti C, Barbieri E, et al. SARS-CoV-2 infection in people living with HIV: a systematic review. Rev Med Virol 2021;31(1):1-12. [PMID: 32875716]
Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med 2022;386(6):531-543. [PMID: 34910859]
FDA(a). Coronavirus (COVID-19) update: FDA limits use of Janssen COVID-19 vaccine to certain individuals. 2022 May 5. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-janssen-covid-19-vaccine-certain-individuals [accessed 2022 Oct 24]
FDA(b). COVID-19 bivalent vaccine boosters. 2022 Nov 29. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-bivalent-vaccine-boosters [accessed 2022 Oct 25]
Mellor MM, Bast AC, Jones NR, et al. Risk of adverse coronavirus disease 2019 outcomes for people living with HIV. AIDS 2021;35(4):F1-f10. [PMID: 33587448]
Mirzaei H, McFarland W, Karamouzian M, et al. COVID-19 among people living with HIV: A systematic review. AIDS Behav 2021;25(1):85-92. [PMID: 32734438]
Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr 2020;14(5):1017-1025. [PMID: 32634716]
Patel VV, Felsen UR, Fisher M, et al. Clinical outcomes and inflammatory markers by HIV serostatus and viral suppression in a large cohort of patients hospitalized with COVID-19. J Acquir Immune Defic Syndr 2021;86(2):224-230. [PMID: 33433966]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383(27):2603-2615. [PMID: 33301246]
Rosenblum HG, Gee J, Liu R, et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect Dis 2022;22(6):802-812. [PMID: 35271805]
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021;384(23):2187-2201. [PMID: 33882225]
Ssentongo P, Heilbrunn ES, Ssentongo AE, et al. Epidemiology and outcomes of COVID-19 in HIV-infected individuals: a systematic review and meta-analysis. Sci Rep 2021;11(1):6283. [PMID: 33737527]
Ssentongo P, Ssentongo AE, Heilbrunn ES, et al. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One 2020;15(8):e0238215. [PMID: 32845926]
Tesoriero JM, Swain CE, Pierce JL, et al. COVID-19 outcomes among persons living with or without diagnosed HIV infection in New York State. JAMA Netw Open 2021;4(2):e2037069. [PMID: 33533933]
WHO. Clinical features and prognostic factors of COVID-19 in people living with HIV hospitalized with suspected or confirmed SARS-CoV-2 infection. 2021 Jul 15. https://apps.who.int/iris/bitstream/handle/10665/342697/WHO-2019-nCoV-Clinical-HIV-2021.1-eng.pdf [accessed 2021 Dec 10]
Woldemeskel BA, Karaba AH, Garliss CC, et al. The BNT162b2 mRNA vaccine elicits robust humoral and cellular immune responses in people living with HIV. Clin Infect Dis 2021. [PMID: 34293114]
Xu S, Huang R, Sy LS, et al. COVID-19 vaccination and non-COVID-19 mortality risk – seven integrated health care organizations, United States, December 14, 2020-July 31, 2021. MMWR Morb Mortal Wkly Rep 2021;70(43):1520-1524. [PMID: 34710075]
Haemophilus influenzae Type B (Hib)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 2: Haemophilus influenzae Type B Vaccine Download PDF |
|
Trade Names |
|
Indications | Patients at risk of Hib infection |
Administration |
Administer according to the CDC Adult Immunization Schedule: |
Revaccination | None |
Comments | Not routinely recommended for people with HIV in the absence of other risk factors |
Abbreviations: CDC, Centers for Disease Control and Prevention; Hib, Haemophilus influenzae type B. |
Discussion: Haemophilus influenzae type B (Hib) vaccination is not routinely recommended for patients with HIV in the absence of other risk factors, such as anatomic or functional asplenia, sickle cell disease, or hematopoietic stem cell transplant, because there is a low risk of Hib infection in adults with HIV [CDC 2023; Thompson, et al. 2021; Briere, et al. 2014]. Data on the safety and efficacy of the Hib vaccine among adults with HIV indicate a strong immune response, similar to that in adults without HIV, except among those with severe immunosuppression [MacLennan, et al. 2016; Dockrell, et al. 1999; Kroon, et al. 1997; Steinhoff, et al. 1991].
References
Briere EC, Rubin L, Moro PL, et al. Prevention and control of haemophilus influenzae type b disease: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 2014;63(Rr-01):1-14. [PMID: 24572654]
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Dockrell DH, Poland GA, Steckelberg JM, et al. Immunogenicity of three Haemophilus influenzae type b protein conjugate vaccines in HIV seropositive adults and analysis of predictors of vaccine response. Vaccine 1999;17(22):2779-2785. [PMID: 10438047]
Kroon FP, van Dissel JT, Rijkers GT, et al. Antibody response to Haemophilus influenzae type b vaccine in relation to the number of CD4+ T lymphocytes in adults infected with human immunodeficiency virus. Clin Infect Dis 1997;25(3):600-606. [PMID: 9314445]
MacLennan CA, Richter A, Hodson J, et al. Brief report: Immunization of HIV-infected adults in the UK with haemophilus influenzae B/meningococcal C glycoconjugate and pneumococcal polysaccharide vaccines. J Acquir Immune Defic Syndr 2016;73(3):287-293. [PMID: 27163175]
Steinhoff MC, Auerbach BS, Nelson KE, et al. Antibody responses to Haemophilus influenzae type B vaccines in men with human immunodeficiency virus infection. N Engl J Med 1991;325(26):1837-1842. [PMID: 1683682]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Hepatitis A Virus (HAV)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 3: Hepatitis A Virus Vaccine Download PDF |
|
Trade Names |
|
Indications | All adults with HIV [CDC(a) 2022] |
Administration |
|
Revaccination | Patients who do not respond to the primary HAV vaccination series should be revaccinated [Thompson, et al. 2021] and counseled to avoid exposure. |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; HAV, hepatitis A virus; HBV, hepatitis B virus; IgG, immunoglobulin G; NYSDOH AI, New York State Department of Health AIDS Institute. |
Discussion: The hepatitis A virus (HAV) vaccine is recommended for all adults with HIV who do not have immunity to HAV [CDC(a) 2022; Thompson, et al. 2021].
The reported rate of HAV antibody seroconversion after vaccination ranges from 49% to 96% [Mena, et al. 2015; Crum-Cianflone and Wallace 2014; Fiore, et al. 2006]. A long-term follow-up study reported that more than 85% of individuals who seroconverted after vaccination had a sustained antibody response for 5 to 10 years [Cheng, et al. 2017; Crum-Cianflone(b), et al. 2011]. Although immunocompetent individuals with HIV respond to the HAV vaccine nearly as well as individuals without HIV, individuals with lower CD4 cell counts are less likely to acquire protective levels of antibody [Mena, et al. 2015; Crum-Cianflone and Wallace 2014; Fiore, et al. 2006].
If a patient’s CD4 count is <200 cells/mm3 or the patient has symptomatic HIV, it is preferable to defer vaccination until several months after initiation of antiretroviral therapy to maximize the antibody response to the vaccine [DHHS 2022]. HAV vaccination should not be deferred in patients who are unlikely to achieve an increased CD4 cell count (see the NYSDOH AI guideline Prevention and Management of Hepatitis A Virus Infection in Adults With HIV).
Care providers should perform HAV immunoglobulin G (IgG) testing at least 1 month after the final dose of the vaccination series to confirm immune response. HAV vaccination should be repeated in patients with no response to initial vaccination, [Thompson, et al. 2021], and they should be counseled to avoid exposure to HAV because they remain susceptible to infection, although a small study reported that 31% of participants who had not seroconverted at month 12 and before month 18 (n = 16) subsequently seroconverted after completing the 2-dose vaccination series [Cheng, et al. 2017]. If a patient is susceptible to both HAV and hepatitis B virus (HBV), the combined HAV/HBV vaccine (given as 3 doses at 0, 1, and 6 months) can be used regardless of the patient’s immune status [Thompson, et al. 2021].
References
CDC(a). ACIP recommendations. 2022 Nov 16. https://www.cdc.gov/vaccines/acip/recommendations.html [accessed 2022 Oct 3]
Cheng A, Chang SY, Sun HY, et al. Long-term durability of responses to 2 or 3 doses of hepatitis A vaccination in human immunodeficiency virus-positive adults on antiretroviral therapy. J Infect Dis 2017;215(4):606-613. [PMID: 28011921]
Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS 2014;28(8):397-410. [PMID: 25029589]
Crum-Cianflone(b) NF, Wilkins K, Lee AW, et al. Long-term durability of immune responses after hepatitis A vaccination among HIV-infected adults. J Infect Dis 2011;203(12):1815-1823. [PMID: 21606540]
DHHS. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. 2022 Sep 28. https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/whats-new-guidelines [accessed 2022 Sep 30]
Fiore AE, Wasley A, Bell BP. Prevention of hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2006;55(Rr-7):1-23. [PMID: 16708058]
Mena G, Garcia-Basteiro AL, Bayas JM. Hepatitis B and A vaccination in HIV-infected adults: A review. Hum Vaccin Immunother 2015;11(11):2582-2598. [PMID: 26208678]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Hepatitis B Virus (HBV)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 4: Hepatitis B Virus Vaccine Download PDF |
|
Trade Names |
|
Indications | Patients who are negative for anti-HBs and do not have chronic HBV infection |
Administration |
|
Revaccination | Patients who do not respond to the primary HBV vaccination series (anti-HBs <10 IU/L) should be revaccinated with Heplisav-B or a double dose of the vaccine series previously administered. |
Comments |
|
Abbreviations: anti-HBs, hepatitis B surface antibody; CDC, Centers for Disease Control and Prevention; FDA, U.S. Food and Drug Administration; HAV, hepatitis A virus; HBV, hepatitis B virus. |
Discussion: The hepatitis B virus (HBV) vaccine is recommended for all adults with HIV who do not have immunity to HBV and who do not have chronic HBV infection [CDC 2023]. The antibody response to the HBV vaccine is reduced in individuals with HIV compared with those who do not have HIV; the reported immune response to the standard dose (20 µg) ranges from 34% to 89% [Mena, et al. 2015; Mast, et al. 2006], with diminishing response with lower CD4 cell counts [Pollack, et al. 2016; Pettit, et al. 2010; Kim, et al. 2008; Overton, et al. 2005]. Undetectable or very low viral load is associated with increased response to HBV vaccination [Mena, et al. 2015; Kim, et al. 2008; Overton, et al. 2005]. Initial vaccination should not be deferred in patients with low CD4 cell counts; some patients with HIV and CD4 counts ≤200 cells/mm3 may have an immune response [DHHS 2022; Whitaker, et al. 2012].
The 3 single-antigen HBV vaccines currently approved by the U.S. Food and Drug Administration (FDA) for individuals ≥18 years old are Engerix-B, Recombivax HB, and Heplisav-B. PreHevbrio, a 3-antigen recombinant HBV vaccine, was approved in 2021 by the FDA for use for individuals ≥18 years old [FDA 2021], but experience regarding its use in patients with HIV is lacking at this time.
In 3 randomized controlled trials among individuals without HIV, administration of 2 doses of Heplisav-B was associated with a higher seroprotection rate than 3 doses of Engerix-B [FDA(b) 2020]. However, the 3 formulations have not yet been established to be equally effective in patients with HIV. A retrospective cohort study among individuals with HIV found seroprotection rates were increased with the Heplisav-B vaccine compared with other previously used HBV vaccines [Schnittman, et al. 2021]. In addition, a recent modeling study determined that use of Heplisav-B among individuals with HIV results in lower costs and increased benefits compared with Engerix-B [Rosenthal, et al. 2020]. The 2-dose option may facilitate completion rates for the vaccination series.
Improved immune response has been reported using a 4-injection double-dose (40 µg) regimen [Chaiklang, et al. 2013; Launay, et al. 2011]. Studies of a 3-injection double-dose regimen reported increased seroconversion rates compared with standard dose only among adults with HIV with CD4 counts >350 cells/mm3 and low or undetectable HIV viral load [Potsch, et al. 2012; Fonseca, et al. 2005]. Accelerated schedules (0, 1, and 3 weeks) may increase adherence to the full vaccination series but are not recommended for patients with CD4 counts ≤500 cells/mm3 because of the increased likelihood of nonresponse [de Vries-Sluijs, et al. 2011]. Patients with HIV should be tested for hepatitis B surface antibody (anti-HBs) 4 to 16 weeks after completing the vaccination series [DHHS 2022; Thompson, et al. 2021]. Other strategies to improve immune response have demonstrated some success, including intradermal administration [Launay, et al. 2011] and addition of adjuvants [Overton, et al. 2010; Cooper, et al. 2005; Sasaki, et al. 2003], but the evidence is not sufficient to make a recommendation.
Patients who do not respond to primary vaccination should be revaccinated with Heplisav-B or a double dose of the vaccine series previously administered. In a recent retrospective, cross-sectional study among individuals with HIV who failed to seroconvert after vaccination (anti-HBs negative and hepatitis B surface antigen negative) with Engerix-B or Recombivax HB, revaccination with Heplisav-B was highly effective in achieving seroprotection [Khaimova, et al. 2021]. If Heplisav-B is not administered as the initial HBV vaccination series, revaccination with the 2-dose series may be considered. Several studies have reported increased response rates from double-dose revaccination [Psevdos, et al. 2010; Cardell, et al. 2008; de Vries-Sluijs, et al. 2008], although the only randomized controlled trial comparing a 3-injection standard dose (20 µg) to a 3-injection, double-dose (40 µg) regimen for revaccination found no difference in response rates. However, the double-dose regimen resulted in a greater and more durable immune response [Rey, et al. 2015]. In patients who do not have an immune response to HBV vaccination and are initiating antiretroviral therapy, revaccination can be deferred until the CD4 count increases to ≥200 cells/mm3 [DHHS 2022]. Revaccination should not be delayed in patients who are unlikely to achieve an increased CD4 cell count.
For people who are susceptible to both hepatitis A virus (HAV) and HBV, the combined HAV/HBV vaccine can be used regardless of immune status, with 3 doses administered at 0, 1, and 6 months. Because no data are available regarding double-dose or 4-injection HBV vaccination with the combined HAV/HBV vaccine in individuals with HIV, the combined vaccine is not recommended for the double-dose or 4-injection HBV vaccination strategy.
See the NYSDOH AI guideline Prevention and Management of Hepatitis B Virus Infection in Adults With HIV.
References
Cardell K, Akerlind B, Sallberg M, et al. Excellent response rate to a double dose of the combined hepatitis A and B vaccine in previous nonresponders to hepatitis B vaccine. J Infect Dis 2008;198(3):299-304. [PMID: 18544037]
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Chaiklang K, Wipasa J, Chaiwarith R, et al. Comparison of immunogenicity and safety of four doses and four double doses vs. standard doses of hepatitis B vaccination in HIV-infected adults: a randomized, controlled trial. PLoS One 2013;8(11):e80409. [PMID: 24265819]
Cooper CL, Davis HL, Angel JB, et al. CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. AIDS 2005;19(14):1473-1479. [PMID: 16135900]
de Vries-Sluijs TE, Hansen BE, van Doornum GJ, et al. A randomized controlled study of accelerated versus standard hepatitis B vaccination in HIV-positive patients. J Infect Dis 2011;203(7):984-991. [PMID: 21266513]
de Vries-Sluijs TE, Hansen BE, van Doornum GJ, et al. A prospective open study of the efficacy of high-dose recombinant hepatitis B rechallenge vaccination in HIV-infected patients. J Infect Dis 2008;197(2):292-294. [PMID: 18177248]
DHHS. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. 2022 Sep 28. https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/whats-new-guidelines [accessed 2022 Sep 30]
FDA(b). Heplisav-B. 2020 May 6. https://www.fda.gov/vaccines-blood-biologics/vaccines/heplisav-b [accessed 2022 Oct 19]
FDA. Prehevbrio. 2021 Dec 13. https://www.fda.gov/vaccines-blood-biologics/prehevbrio [accessed 2022 Oct 19]
Fonseca MO, Pang LW, de Paula Cavalheiro N, et al. Randomized trial of recombinant hepatitis B vaccine in HIV-infected adult patients comparing a standard dose to a double dose. Vaccine 2005;23(22):2902-2908. [PMID: 15780739]
Khaimova R, Fischetti B, Cope R, et al. Serological response with Heplisav-B(R) in prior Hepatitis B vaccine non-responders living with HIV. Vaccine 2021;39(44):6529-6534. [PMID: 34600748]
Kim HN, Harrington RD, Van Rompaey SE, et al. Independent clinical predictors of impaired response to hepatitis B vaccination in HIV-infected persons. Int J STD AIDS 2008;19(9):600-604. [PMID: 18725550]
Launay O, van der Vliet D, Rosenberg AR, et al. Safety and immunogenicity of 4 intramuscular double doses and 4 intradermal low doses vs standard hepatitis B vaccine regimen in adults with HIV-1: a randomized controlled trial. JAMA 2011;305(14):1432-1440. [PMID: 21486976]
Mast EE, Weinbaum CM, Fiore AE, et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: immunization of adults. MMWR Recomm Rep 2006;55(Rr-16):1-33; quiz CE31-34. [PMID: 17159833]
Mena G, Garcia-Basteiro AL, Bayas JM. Hepatitis B and A vaccination in HIV-infected adults: A review. Hum Vaccin Immunother 2015;11(11):2582-2598. [PMID: 26208678]
Overton ET, Kang M, Peters MG, et al. Immune response to hepatitis B vaccine in HIV-infected subjects using granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine adjuvant: ACTG study 5220. Vaccine 2010;28(34):5597-5604. [PMID: 20600512]
Overton ET, Sungkanuparph S, Powderly WG, et al. Undetectable plasma HIV RNA load predicts success after hepatitis B vaccination in HIV-infected persons. Clin Infect Dis 2005;41(7):1045-1048. [PMID: 16142673]
Pettit NN, DePestel DD, Malani PN, et al. Factors associated with seroconversion after standard dose hepatitis B vaccination and high-dose revaccination among HIV-infected patients. HIV Clin Trials 2010;11(6):332-339. [PMID: 21239361]
Pollack TM, Trang le TT, Ngo L, et al. Response to hepatitis B vaccination among HIV-infected adults in Vietnam. J Virus Erad 2016;2(2):102-106. [PMID: 27482443]
Potsch DV, Camacho LA, Tuboi S, et al. Vaccination against hepatitis B with 4-double doses increases response rates and antibodies titers in HIV-infected adults. Vaccine 2012;30(41):5973-5977. [PMID: 22828589]
Psevdos G, Kim JH, Groce V, et al. Efficacy of double-dose hepatitis B rescue vaccination in HIV-infected patients. AIDS Patient Care STDS 2010;24(7):403-407. [PMID: 20586648]
Rey D, Piroth L, Wendling MJ, et al. Safety and immunogenicity of double-dose versus standard-dose hepatitis B revaccination in non-responding adults with HIV-1 (ANRS HB04 B-BOOST): a multicentre, open-label, randomised controlled trial. Lancet Infect Dis 2015;15(11):1283-1291. [PMID: 26257021]
Rosenthal EM, Hall EW, Rosenberg ES, et al. Assessing the cost-utility of preferentially administering Heplisav-B vaccine to certain populations. Vaccine 2020;38(51):8206-8215. [PMID: 33160756]
Sasaki M, Foccacia R, de Messias-Reason IJ. Efficacy of granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine adjuvant for hepatitis B virus in patients with HIV infection. Vaccine 2003;21(31):4545-4549. [PMID: 14575766]
Schnittman SR, Zepf R, Cocohoba J, et al. Brief report: Heplisav-B seroprotection in people with HIV: a single-center experience. J Acquir Immune Defic Syndr 2021;86(4):445-449. [PMID: 33196553]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Whitaker JA, Rouphael NG, Edupuganti S, et al. Strategies to increase responsiveness to hepatitis B vaccination in adults with HIV-1. Lancet Infect Dis 2012;12(12):966-976. [PMID: 23174382]
Human Papillomavirus (HPV)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 5: Human Papillomavirus Vaccine Download PDF |
|
Trade Name | Gardasil 9 |
Indications | All patients 9 to 45 years old who were not previously vaccinated or did not receive a complete 3-dose series |
Administration |
Administer through age 45 years as a 3-dose series according to the CDC Adult Immunization Schedule: |
Revaccination | None |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; HPV, human papillomavirus; NYSDOH AI, New York State Department of Health AIDS Institute. |
Discussion: In 2006, the U.S. Food and Drug Administration (FDA) approved a 9-valent vaccine that protects against nononcogenic human papillomavirus (HPV) types 6 and 11 and oncogenic HPV types 16, 18, 31, 33, 45, 52, and 58 (Gardasil 9). Because it offers broader coverage of HPV types than other vaccines, the 9-valent vaccine is the only HPV vaccine available in the United States (see CDC Supplemental information and guidance for vaccination providers regarding use of 9-valent HPV for more information). The HPV vaccine is approved by the FDA for preventive but not therapeutic use.
Extrapolating data from the demonstrated effectiveness of the quadrivalent HPV vaccine in older individuals [Wilkin, et al. 2018], the FDA expanded the age range for approved use of the HPV vaccine in the United States from ages 9 to 26 years to ages 9 to 45 years [FDA(a) 2020]. There is no specific mention of HIV infection in the updated FDA approval. Although 1 study demonstrated lower efficacy of the quadrivalent vaccine in individuals with HIV [Wilkin, et al. 2018], other research linked HIV viral suppression to vaccine efficacy [Money, et al. 2016].
When to vaccinate: HPV vaccination may be scheduled at the same time as standard adolescent vaccines offered at ages 9 to 12 years [CDC(a) 2021]. If possible, the HPV vaccine series should begin at 9 years old. The 3-dose vaccine is recommended for all patients with HIV who are 9 to 45 years old. The 9-valent HPV vaccine should be administered according to the CDC standard schedule for immunocompromised adults, children, and adolescents (a 3-dose regimen over a 6-month period at 0, 2, and 6 months) and should be offered regardless of CD4 cell count.
HPV vaccination provides high levels of neutralizing antibodies for at least 5 years and is protective in individuals ≤26 years old who do not have HIV, regardless of history of sexual activity; however, the full length of its protection has not been established. In an observational study conducted in England that examined the effectiveness of a national HPV immunization program, the reduction in cervical cancer was greatest in individuals who received the vaccine at ages 12 to 13 years [Falcaro, et al. 2021]. Although data are limited, the immunogenicity of the quadrivalent HPV vaccine has been demonstrated in individuals with HIV [Wilkin, et al. 2018; Kojic, et al. 2014].
Vaccination is not expected to change the course of established HPV infections but may prevent infection from other strains that are part of a polyvalent vaccine.
HPV testing and vaccination: HPV testing is not recommended before vaccine administration. It is unlikely that an individual will have been infected with all the HPV types covered by the 9-valent vaccine; therefore, it is expected that the 9-valent HPV vaccine will be effective against any of the 9 HPV types or any HPV types to which the individual has not been exposed. There also may be beneficial prevention due to cross-reactivity with other HPV types not included in the 9-valent vaccine [Wheeler, et al. 2012].
Revaccination with the 9-valent HPV vaccine is not currently recommended for individuals who previously received the bivalent or quadrivalent HPV vaccine [Petrosky, et al. 2015]. Vaccination with the quadrivalent HPV vaccine has demonstrated cross-protection against other oncogenic HPV types [Kemp, et al. 2011]. There is no maximum interval between vaccine doses as long as 3 doses are given, so there is no need to repeat doses if a scheduled vaccination is missed [CDC(a) 2021].
References
CDC(a). HPV vaccine schedule and dosing. 2021 Nov 1. https://www.cdc.gov/hpv/hcp/schedules-recommendations.html [accessed 2022 Oct 20]
Falcaro M, Castanon A, Ndlela B, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 2021. [PMID: 34741816]
FDA(a). Gardasil 9. 2020 Aug 21. https://www.fda.gov/biologicsbloodvaccines/vaccines/approvedproducts/ucm426445.htm [accessed 2022 Oct 20]
Kemp TJ, Hildesheim A, Safaeian M, et al. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine 2011;29(11):2011-2014. [PMID: 21241731]
Kojic EM, Kang M, Cespedes MS, et al. Immunogenicity and safety of the quadrivalent human papillomavirus vaccine in HIV-1-infected women. Clin Infect Dis 2014;59(1):127-135. [PMID: 24723284]
Money DM, Moses E, Blitz S, et al. HIV viral suppression results in higher antibody responses in HIV-positive women vaccinated with the quadrivalent human papillomavirus vaccine. Vaccine 2016;34(40):4799-4806. [PMID: 27544584]
Petrosky E, Bocchini JA, Jr., Hariri S, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep 2015;64(11):300-304. [PMID: 25811679]
Wheeler CM, Castellsague X, Garland SM, et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 2012;13(1):100-110. [PMID: 22075170]
Wilkin TJ, Chen H, Cespedes MS, et al. A randomized, placebo-controlled trial of the quadrivalent human papillomavirus vaccine in human immunodeficiency virus-infected adults aged 27 years or older: AIDS Clinical Trials Group Protocol A5298. Clin Infect Dis 2018;67(9):1339-1346. [PMID: 29659751]
Influenza
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 6: Influenza Vaccine Download PDF |
|
Trade Names | See CDC influenza vaccines table |
Indications | All adults with HIV |
Administration |
Administer annually during flu season (October through May) according to the CDC Adult Immunization Schedule: |
Revaccination | None |
Comments | Covered by the Vaccine Injury Compensation Program |
Abbreviation: CDC, Centers for Disease Control and Prevention. |
Discussion: People with HIV are at greater risk of severe morbidity from an influenza infection [Grohskopf, et al. 2019; Kunisaki and Janoff 2009] than people who do not have HIV and should be vaccinated annually during flu season (October through May) according to standard Centers for Disease Control and Prevention (CDC) guidelines for all adults [Thompson, et al. 2021; Grohskopf, et al. 2019]. Inactivated influenza vaccine offers protective immunity in adults with HIV [Grohskopf, et al. 2019; Remschmidt, et al. 2014; Beck, et al. 2012]. Live, attenuated influenza vaccine should not be used for individuals with HIV. Antibody titers lower than those observed in the general population have been reported among adults with HIV, especially among those with advanced HIV disease who are ≥35 years old, have low CD4 cell counts, and have detectable viremia [Garg, et al. 2016; Crum-Cianflone(a), et al. 2011; Evison, et al. 2009; Yamanaka, et al. 2005; Kroon, et al. 2000]. Studies comparing intradermal and intramuscular vaccines report no difference in immunogenicity, but intradermal vaccination is associated with increased likelihood of redness, swelling, and tenderness at the injection site [Garg, et al. 2016; Seo, et al. 2016].
The CDC does not recommend a second vaccination in individuals with HIV [Grohskopf, et al. 2019], although one study reported that a second dose of an adjuvanted vaccine significantly increased the rate of seroprotective responses [Bickel, et al. 2011]. There is some evidence that influenza seroprotection is higher for people ≥18 years old who are given a double-dose vaccine than for those given the standard dose vaccine, but the clinical significance of this remains unknown [McKittrick, et al. 2013; Cooper, et al. 2011]. A study among children and young adults (3 to 21 years old) found no increased immunity among participants with HIV who received the double-dose vaccine [Hakim, et al. 2016].
Results of 2 studies suggest a possible benefit to delaying influenza vaccination to after mid-November; patients vaccinated later in the flu season had lower rates of laboratory-confirmed influenza and influenza-like illnesses than those vaccinated earlier in the season [Glinka, et al. 2016; Werker, et al. 2014]. Monitoring regional influenza activity will help ensure appropriate timing of influenza vaccination. There is no recommendation for post-vaccination serologic testing to determine immune response [Grohskopf, et al. 2019].
References
Beck CR, McKenzie BC, Hashim AB, et al. Influenza vaccination for immunocompromised patients: systematic review and meta-analysis by etiology. J Infect Dis 2012;206(8):1250-1259. [PMID: 22904335]
Bickel M, von Hentig N, Wieters I, et al. Immune response after two doses of the novel split virion, adjuvanted pandemic H1N1 influenza A vaccine in HIV-1-infected patients. Clin Infect Dis 2011;52(1):122-127. [PMID: 21148530]
Cooper C, Thorne A, Klein M, et al. Immunogenicity is not improved by increased antigen dose or booster dosing of seasonal influenza vaccine in a randomized trial of HIV infected adults. PLoS One 2011;6(3):e17758. [PMID: 21512577]
Crum-Cianflone(a) NF, Eberly LE, Duplessis C, et al. Immunogenicity of a monovalent 2009 influenza A (H1N1) vaccine in an immunocompromised population: a prospective study comparing HIV-infected adults with HIV-uninfected adults. Clin Infect Dis 2011;52(1):138-146. [PMID: 21148532]
Evison J, Farese S, Seitz M, et al. Randomized, double-blind comparative trial of subunit and virosomal influenza vaccines for immunocompromised patients. Clin Infect Dis 2009;48(10):1402-1412. [PMID: 19361304]
Garg S, Thongcharoen P, Praphasiri P, et al. Randomized controlled trial to compare immunogenicity of standard-dose intramuscular versus intradermal trivalent inactivated influenza vaccine in HIV-infected men who have sex with men in Bangkok, Thailand. Clin Infect Dis 2016;62(3):383-391. [PMID: 26486702]
Glinka ER, Smith DM, Johns ST. Timing matters – Influenza vaccination to HIV-infected patients. HIV Med 2016;17(8):601-604. [PMID: 26810556]
Grohskopf LA, Alyanak E, Broder KR, et al. Prevention and control of seasonal influenza with caccines: Recommendations of the Advisory Committee on Immunization Practices – United States, 2019-20 influenza season. MMWR Recomm Rep 2019;68(3):1-21. [PMID: 31441906]
Hakim H, Allison KJ, Van de Velde LA, et al. Immunogenicity and safety of high-dose trivalent inactivated influenza vaccine compared to standard-dose vaccine in children and young adults with cancer or HIV infection. Vaccine 2016;34(27):3141-3148. [PMID: 27129426]
Kroon FP, van Dissel JT, de Jong JC, et al. Antibody response after influenza vaccination in HIV-infected individuals: a consecutive 3-year study. Vaccine 2000;18(26):3040-3049. [PMID: 10825608]
Kunisaki KM, Janoff EN. Influenza in immunosuppressed populations: a review of infection frequency, morbidity, mortality, and vaccine responses. Lancet Infect Dis 2009;9(8):493-504. [PMID: 19628174]
McKittrick N, Frank I, Jacobson JM, et al. Improved immunogenicity with high-dose seasonal influenza vaccine in HIV-infected persons: a single-center, parallel, randomized trial. Ann Intern Med 2013;158(1):19-26. [PMID: 23277897]
Remschmidt C, Wichmann O, Harder T. Influenza vaccination in HIV-infected individuals: systematic review and assessment of quality of evidence related to vaccine efficacy, effectiveness and safety. Vaccine 2014;32(43):5585-5592. [PMID: 25131742]
Seo YB, Lee J, Song JY, et al. Safety and immunogenicity of influenza vaccine among HIV-infected adults: Conventional vaccine vs. intradermal vaccine. Hum Vaccin Immunother 2016;12(2):478-484. [PMID: 26431466]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Werker GR, Sharif B, Sun H, et al. Optimal timing of influenza vaccination in patients with human immunodeficiency virus: a Markov cohort model based on serial study participant hemoagglutination inhibition titers. Vaccine 2014;32(6):677-684. [PMID: 24355089]
Yamanaka H, Teruya K, Tanaka M, et al. Efficacy and immunologic responses to influenza vaccine in HIV-1-infected patients. J Acquir Immune Defic Syndr 2005;39(2):167-173. [PMID: 15905732]
Measles, Mumps, Rubella (MMR)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 7: Measles, Mumps, Rubella Vaccine Download PDF |
|
Trade Names | M-M-R II |
Indications | For patients with CD4 counts ≥200 cells/mm3 for ≥6 months who do not have evidence of MMR immunity |
Administration |
Administer according to the CDC Adult Immunization Schedule: |
Revaccination | Recommended only in the setting of an outbreak |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; MMR, measles, mumps, rubella. |
Discussion: Immunocompromised individuals are at increased risk of serious and life-threatening complications if infected with measles [McLean, et al. 2013]. Patients with HIV who have CD4 counts ≥200 cells/mm3 for ≥6 months and who do not have evidence of immunity to measles mumps, rubella (MMR) should be vaccinated with 2 doses of MMR vaccine ≥4 weeks apart. Documentation of previous age-appropriate vaccination or laboratory confirmation of prior disease is acceptable evidence of immunity. Serologic screening is required if other acceptable evidence of immunity is not available and to determine rubella immunity among individuals of childbearing potential. In the absence of other evidence of immunity, individuals with perinatally acquired HIV who received childhood vaccination with MMR before establishment of effective antiretroviral therapy (ART) should be revaccinated (2 doses) after effective ART is established [McLean, et al. 2013]. There is no recommendation for post-vaccination serologic testing to determine immune response [McLean, et al. 2013].
Two studies that examined the antibody response after MMR vaccination in adults with HIV taking ART reported high levels of protective antibodies post-vaccination, although the levels were lower than in adults without HIV. A study conducted in Mexico among adults with HIV who were seronegative for measles reported no significant difference in initial antibody response to measles vaccination between adults with and without HIV (81% vs. 85%). However, at 1 year, the observed decline in antibody response was faster in adults with HIV than in those without HIV [Belaunzaran-Zamudio, et al. 2009]. A study in Thailand reported protective antibodies to measles (74.1%), mumps (65.7%), and rubella (93.3%) among adults with HIV 8 to 12 weeks after MMR vaccination. Compared with adults without HIV, the seroconversion rates were lower but reached statistical significance only for mumps [Chaiwarith, et al. 2016].
No data are available on revaccination in adults with HIV. Revaccination has improved measles antibody response in children with HIV on ART who had an inadequate initial response to vaccination [Abzug, et al. 2012; Aurpibul, et al. 2007]. If individuals previously vaccinated with 2 doses of a mumps-containing vaccine are identified as having increased risk for mumps by public health authorities because of an outbreak, these at-risk individuals should receive a third dose of a mumps-containing vaccine to improve protection against mumps disease and related complications [Marin, et al. 2018].
MMR vaccination contains live virus and is contraindicated for patients with CD4 counts <200 cells/mm3 because of reports of adverse events, such as measles pneumonitis, in severely immunocompromised patients [Angel, et al. 1998; CDC 1996]. Serious adverse effects have not been reported in adults who were not severely immunocompromised [Chaiwarith, et al. 2016; McLean, et al. 2013; Belaunzaran-Zamudio, et al. 2009]. The MMR + varicella vaccine has not been adequately studied in individuals with HIV and is not recommended as a substitute for the MMR vaccine in this population [McLean, et al. 2013].
References
Abzug MJ, Qin M, Levin MJ, et al. Immunogenicity, immunologic memory, and safety following measles revaccination in HIV-infected children receiving highly active antiretroviral therapy. J Infect Dis 2012;206(4):512-522. [PMID: 22693229]
Angel JB, Walpita P, Lerch RA, et al. Vaccine-associated measles pneumonitis in an adult with AIDS. Ann Intern Med 1998;129(2):104-106. [PMID: 9669968]
Aurpibul L, Puthanakit T, Sirisanthana T, et al. Response to measles, mumps, and rubella revaccination in HIV-infected children with immune recovery after highly active antiretroviral therapy. Clin Infect Dis 2007;45(5):637-642. [PMID: 17683001]
Belaunzaran-Zamudio PF, Garcia-Leon ML, Wong-Chew RM, et al. Early loss of measles antibodies after MMR vaccine among HIV-infected adults receiving HAART. Vaccine 2009;27(50):7059-7064. [PMID: 19799846]
CDC. Measles pneumonitis following measles-mumps-rubella vaccination of a patient with HIV infection, 1993. MMWR Morb Mortal Wkly Rep 1996;45(28):603-606. [PMID: 8676852]
Chaiwarith R, Praparattanapan J, Nuket K, et al. Seroprevalence of antibodies to measles, mumps, and rubella, and serologic responses after vaccination among human immunodeficiency virus (HIV)-1 infected adults in Northern Thailand. BMC Infect Dis 2016;16:190. [PMID: 27138005]
Marin M, Marlow M, Moore KL, et al. Recommendation of the Advisory Committee on Immunization Practices for use of a third dose of mumps virus-containing vaccine in persons at increased risk for mumps during an outbreak. MMWR Morb Mortal Wkly Rep 2018;67(1):33-38. [PMID: 29324728]
McLean HQ, Fiebelkorn AP, Temte JL, et al. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013;62(Rr-04):1-34. [PMID: 23760231]
Meningococcal Serotypes A,C, W, and Y (MenACWY)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 8: Meningococcal Serotypes A,C, W, and Y Vaccine Download PDF |
|
Trade Names |
|
Indications | All patients with HIV |
Administration |
|
Revaccination | Administer 1 booster dose of MenACWY vaccine every 5 years. |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; MenACWY, meningococcal serotypes A,C, W, and Y; NYSDOH, New York State Department of Health. |
Discussion: Adults with HIV are at increased risk of invasive meningococcal disease due to serogroups C, W, and Y [Mbaeyi, et al. 2020; Folaranmi, et al. 2017]. A study in New York City reported a 10-fold increased risk of invasive meningococcal disease in patients with HIV, with the highest risk among those with CD4 counts ≤200 cells/mm3 [Miller, et al. 2014]. As of 2020, the CDC recommends vaccinating all previously unvaccinated adults with HIV with a 2-dose primary series of meningococcal groups A,C, W, and Y (MenACWY) vaccine (MenACWY-CRM, MenACWY-D, or MenACWY-TT) administered ≥8 weeks apart [Mbaeyi, et al. 2020].
Data on meningococcal vaccine efficacy among adults with HIV are not currently available [Mbaeyi, et al. 2020]. Among adolescents with HIV, available evidence indicates that the vaccine is immunogenic and serious adverse events are rare, but adolescents with HIV (and especially those with lower CD4 cell counts and higher viral loads) had reduced antibody levels compared with adolescents without HIV [Lujan-Zilbermann, et al. 2012; Siberry, et al. 2010]. Adding a second vaccine dose significantly improved antibody levels 28 and 72 weeks after immunization, particularly among adolescents with CD4% ≥15 [Lujan-Zilbermann, et al. 2012].
Booster doses every 5 years are needed to maintain immunity. There is no recommendation for post-vaccination serologic testing to determine immune response [Mbaeyi, et al. 2020].
References
Folaranmi TA, Kretz CB, Kamiya H, et al. Increased risk for meningococcal disease among men who have sex with men in the United States, 2012-2015. Clin Infect Dis 2017. [PMID: 28505234]
Lujan-Zilbermann J, Warshaw MG, Williams PL, et al. Immunogenicity and safety of 1 vs 2 doses of quadrivalent meningococcal conjugate vaccine in youth infected with human immunodeficiency virus. J Pediatr 2012;161(4):676-681.e672. [PMID: 22622049]
Mbaeyi SA, Bozio CH, Duffy J, et al. Meningococcal vaccination: recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2020;69(9):1-41. [PMID: 33417592]
Miller L, Arakaki L, Ramautar A, et al. Elevated risk for invasive meningococcal disease among persons with HIV. Ann Intern Med 2014;160(1):30-37. [PMID: 24166695]
Siberry GK, Williams PL, Lujan-Zilbermann J, et al. Phase I/II, open-label trial of safety and immunogenicity of meningococcal (groups A, C, Y, and W-135) polysaccharide diphtheria toxoid conjugate vaccine in human immunodeficiency virus-infected adolescents. Pediatr Infect Dis J 2010;29(5):391-396. [PMID: 20431379]
Meningococcal Serotype B (MenB)
Reviewed and updated: Marguerite A. Urban, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 9a: MenB Vaccine for Prevention of MenB Infection Download PDF |
|
Trade Names |
|
Indications | Patients at risk of MenB infection |
Administration | Administer according to the CDC Adult Immunization Schedule 2023: HTML | PDF |
Revaccination | None |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; MenB, meningococcal serotype B. |
Discussion: The meningococcal serotype B (MenB) vaccine offers protection against MenB infection. MenB vaccine is not routinely recommended for adults with HIV unless they have another indication for immunization. No increased risk of serogroup B meningococcal disease among individuals with HIV has been reported [CDC 2023].
Table 9b: MenB Vaccine for Prevention of Gonorrhea Download PDF |
|
Trade Name | Bexsero (4CMenB) |
Indications | Patients at risk of gonorrhea infection, i.e., MSM and other individuals who have had a bacterial STI in the prior 12 months, sex workers, and individuals engaging in condomless sex with multiple partners (A2†) |
Administration | 2 doses; first dose given at month 0 and second dose given at month 2 [a] |
Revaccination | None [a] |
Comments | Note: Bexsero (4CMenB) and Trumenba (MenB-FHbp) are not interchangeable |
Abbreviations: CDC, Centers for Disease Control and Prevention; MenB, meningococcal serotype B; MSM, men who have sex with men; STI, sexually transmitted infection. Note:
|
Discussion: The N. gonorrhoeae and N. meningitidis organisms are genetically similar and share many outer membrane proteins. In retrospective observational studies, MenB vaccination has been associated with 30% to 40% protection against gonorrhea infection [Abara, et al. 2022; Wang, et al. 2022; Petousis-Harris, et al. 2017]. The prospective randomized phase 3 DOXYVAC trial evaluated the use of 4CMenB vaccination dosed at 0 and 2 months for the prevention of gonococcal infection in men who have sex with men who had a history of a bacterial sexually transmitted infection in the prior year and were taking HIV pre-exposure prophylaxis. Preliminary data show a statistically significant increase in time to the first episode of gonorrhea among participants who received the 4CMenB vaccine. Because of the significant outcomes, enrollment in the trial was halted and all participants were offered 4CMenB vaccination [Molina, et al. 2023]. This committee finds the early evidence of protection against gonorrhea sufficient to recommend vaccination with 4CMenB vaccine (Bexsero) for adults at risk of acquiring gonorrhea. As results from ongoing clinical trials become available, the MCCC will review the findings and confirm or adjust recommendations in accordance with the evidence.
Note: Meningococcal A, C, W, Y vaccine (Menveo, MenQuadfi, Menactra) and MenB-FHbp (Trumenba) are not interchangeable with 4CMenB vaccine and would not be expected to offer protection against N. gonorrhoeae.
References
Abara WE, Bernstein KT, Lewis FMT, et al. Effectiveness of a serogroup B outer membrane vesicle meningococcal vaccine against gonorrhoea: a retrospective observational study. Lancet Infect Dis 2022;22(7):1021-1029. [PMID: 35427490]
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Molina JM, Bercot B, Assoumou L, et al. ANRS 174 Doxyvac: an open-label randomized trial to prevent STIs in MSM on PrEP. Abstract 119. CROI; 2023 Feb 19-22; Seattle, WA. https://www.croiconference.org/abstract/anrs-174-doxyvac-an-open-label-randomized-trial-to-prevent-stis-in-msm-on-prep/
Petousis-Harris H, Paynter J, Morgan J, et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 2017;390(10102):1603-1610. [PMID: 28705462]
Wang B, Giles L, Andraweera P, et al. Effectiveness and impact of the 4CMenB vaccine against invasive serogroup B meningococcal disease and gonorrhoea in an infant, child, and adolescent programme: an observational cohort and case-control study. Lancet Infect Dis 2022;22(7):1011-1020. [PMID: 35427492]
Mpox
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
RECOMMENDATIONS |
Mpox Vaccine
|
Table 10: Mpox Vaccine [a] Download PDF |
|
Trade name | JYNNEOS (also called Imvamune or Imvanex) |
Type of vaccine | Live virus that does not replicate efficiently in human cells |
Administration | Two subcutaneous injections 4 weeks apart |
Indication | Individuals with HIV ≥18 years old who are at high risk of or who have been exposed to mpox within the past 14 days |
Adverse reactions | Injection site reactions such as pain, swelling, and redness. Vaccination with JYNNEOS will not cause mpox infection. |
Contraindications | Severe allergy to any component of the vaccine (gentamicin, ciprofloxacin, or egg protein) |
Immune response | Maximal development of the immune response takes 2 weeks after second dose. |
Pregnancy/ breastfeeding |
No evidence of reproductive harm from animal data. Pregnancy and breastfeeding are not contraindications for vaccination. |
Note:
|
Immunization: The Centers for Disease Control and Prevention (CDC) considers people with HIV to be at risk for severe mpox disease and recommends prioritization of those at risk for receipt of the JYNNEOS mpox vaccine [CDC(e) 2022]. Vaccination is used to prevent mpox and as post-exposure prophylaxis; it protects against disease when administered before exposure. If administered after exposure, the vaccine may prevent development or decrease the severity of mpox disease. See CDC Interim Clinical Considerations for Use of JYNNEOS and ACAM2000 Vaccines During the 2022 U.S. Monkeypox Outbreak.
Two vaccines against mpox are currently approved by the U.S. Food and Drug Administration: JYNNEOS (Imvamune or Imvanex) and ACAM2000. Only JYNNEOS is safe for people with HIV. The ACAM2000 vaccine is contraindicated in adults with HIV and their household contacts.
JYNNEOS contains live vaccinia virus, but the virus does not replicate in humans. JYNNEOS is considered safe to use in adults with HIV regardless of viral load or CD4 cell count. No data are available on the effectiveness of available mpox vaccines in this current outbreak, but a fulminant form of mpox has been reported in people with advanced immunosuppression due to HIV [Mitja, et al. 2023].
The safety and immunogenicity of the JYNNEOS vaccine have been evaluated in adults with HIV; however, the immunogenicity is unknown in individuals who are not virally suppressed or who have with CD4 counts ≤200 cells/mm3. Vaccine efficacy may be lower in patients with low CD4 cell counts. However, given the risk of severe illness in immunosuppressed individuals, vaccination is recommended regardless of CD4 cell count and degree of viral suppression.
Vaccine dosing: The CDC recommends the mpox vaccine be given within 4 days of exposure to prevent disease. If given 4 to 14 days after exposure, vaccination may not prevent disease but may reduce symptoms [CDC(e) 2022]. Peak immunogenicity is achieved 2 weeks after the second JYNNEOS dose [Rao, et al. 2022].
KEY POINTS |
|
Presentation: A high index of suspicion is required because the clinical presentation of mpox disease can vary from a few scattered papules and mild constitutional symptoms to severe illness. Symptoms of mpox may include fever, headache, muscle aches, backache, swollen lymph nodes, moderate to severe pain, exhaustion, and rash that may include painful oral, anal, or genital lesions.
Mortality: Studies of mpox in remote, medically underserved areas of Central Africa have reported mortality of 11% in unvaccinated individuals [Durski, et al. 2018]. People with advanced HIV or who are not virally suppressed may be at risk of severe disease. To date, no deaths have been reported in the United States during the current outbreak, but a fulminant form of mpox has been reported in people with advanced immunosuppression due to HIV [Mitja, et al. 2023].
Transmission: Although many of those affected in the current global outbreaks are men who have sex with men, the virus can be acquired by anyone who has been in close contact with someone with mpox. The virus that causes mpox is transmitted via the following:
- Direct skin-to-skin contact with an infectious rash, scabs, or body fluids
- Exposure to respiratory secretions during prolonged face-to-face contact or intimate physical contact, such as kissing, cuddling, or sex
- Touching objects or fabrics (e.g., clothing or linens) that have been in contact with the rash or body fluids of someone with mpox
- Being scratched or bitten by an infected animal
References
CDC(e). Interim clinical considerations for use of JYNNEOS and ACAM2000 vaccines during the 2022 U.S. monkeypox outbreak. 2022 Oct 19. https://www.cdc.gov/poxvirus/monkeypox/considerations-for-monkeypox-vaccination.html [accessed 2022 Oct 25]
Durski KN, McCollum AM, Nakazawa Y, et al. Emergence of monkeypox – west and central Africa, 1970-2017. MMWR Morb Mortal Wkly Rep 2018;67(10):306-310. [PMID: 29543790]
Mitja O, Alemany A, Marks M, et al. Mpox in people with advanced HIV infection: a global case series. Lancet 2023. [PMID: 36828001]
Rao AK, Petersen BW, Whitehill F, et al. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices – United States, 2022. MMWR Morb Mortal Wkly Rep 2022;71(22):734-742. [PMID: 35653347]
Pneumococcal
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 11: Pneumococcal Vaccine (see also Centers for Disease Control and Prevention Adult Immunization Schedules: By Age [Table 1] and Medical Condition [Table 2] and PneumoRecs VaxAdvisor) Download PDF |
|
Trade Names |
|
Indications | All patients with HIV |
Administration | For patients who have not received a pneumococcal vaccine or whose vaccination status is unknown: Vaccinate with 1 dose of PCV15 or 1 dose of PCV20. If PCV15 is used, follow with 1 dose of PPSV23, with a minimum interval of 8 weeks between the doses. |
Revaccination | Consult the PneumoRecs VaxAdvisor |
Comments |
|
Discussion: Individuals with HIV are at increased risk of serious disease due to Streptococcus pneumoniae, including bacteremia, meningitis, and pneumonia. Pneumococcal vaccination is recommended for all adults with HIV as soon as possible after HIV diagnosis [CDC 2023; Kobayashi, et al. 2022]. Patients who have not previously been vaccinated or whose vaccination status is unknown should receive 1 dose of the 15-valent pneumococcal conjugate vaccine (PCV15) or 1 dose of the 20-valent pneumococcal conjugate vaccine (PCV20); if PCV15 is used, it should be followed with 1 dose of the 23-valent pneumococcal polysaccharide vaccine (PPSV23), with a minimum interval of 8 weeks between the doses. There is no recommendation for post-vaccination serologic testing to determine immune response [CDC 2023; Kobayashi, et al. 2022]. See the Centers for Disease Control and Prevention PneumoRecs VaxAdvisor for vaccination recommendations by age and pneumococcal immunization history.
Pneumococcal vaccination has been shown to reduce pneumococcal bacteremia and mortality among adults with HIV [Chowers, et al. 2017; Rodriguez-Barradas, et al. 2008; Grau, et al. 2005; Hung, et al. 2004]. Both polysaccharide and conjugate pneumococcal vaccines appear to be safe and immunogenic among adults with HIV who have CD4 counts ≥200 cells/mm3 [Lombardi, et al. 2016; Bhorat, et al. 2015; Rodriguez-Barradas, et al. 2015; Ho, et al. 2013].
Patients with CD4 counts <200 cells/mm3 are at the highest risk of pneumococcal disease. Immunogenicity was demonstrated for individuals with HIV with CD4 counts <200 cells/mm3 who received PCV7 [French, et al. 2010]. Patients with HIV who have not previously received any pneumococcal vaccine should receive a dose of PCV15 or PCV20, regardless of CD4 cell count. Although there is evidence of the effectiveness of PPSV23 among patients with CD4 counts <200 cells/mm3, the benefit appears to be greatest among patients with HIV RNA levels <100,000 copies/mL and among those who are on antiretroviral therapy [French, et al. 2010].
Contraindications to pneumococcal vaccination include a history of anaphylaxis caused by any vaccine component. Patients with a history of an anaphylactic reaction to any conjugate vaccines or diphtheria toxoid should not receive conjugate vaccine [CDC 2023].
References
Bhorat AE, Madhi SA, Laudat F, et al. Immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine in HIV-infected individuals naive to pneumococcal vaccination. AIDS 2015;29(11):1345-1354. [PMID: 25888646]
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Chowers M, Regev-Yochay G, Mor O, et al. Invasive pneumococcal disease (IPD) in HIV infected patients in Israel since the introduction of pneumococcal conjugated vaccines (PCV): Analysis of a nationwide surveillance study, 2009-2014. Hum Vaccin Immunother 2017;13(1):216-219. [PMID: 27648488]
French N, Gordon SB, Mwalukomo T, et al. A trial of a 7-valent pneumococcal conjugate vaccine in HIV-infected adults. N Engl J Med 2010;362(9):812-822. [PMID: 20200385]
Grau I, Pallares R, Tubau F, et al. Epidemiologic changes in bacteremic pneumococcal disease in patients with human immunodeficiency virus in the era of highly active antiretroviral therapy. Arch Intern Med 2005;165(13):1533-1540. [PMID: 16009870]
Ho YL, Brandao AP, de Cunto Brandileone MC, et al. Immunogenicity and safety of pneumococcal conjugate polysaccharide and free polysaccharide vaccines alone or combined in HIV-infected adults in Brazil. Vaccine 2013;31(37):4047-4053. [PMID: 23684823]
Hung CC, Chen MY, Hsieh SM, et al. Clinical experience of the 23-valent capsular polysaccharide pneumococcal vaccination in HIV-1-infected patients receiving highly active antiretroviral therapy: a prospective observational study. Vaccine 2004;22(15-16):2006-2012. [PMID: 15121313]
Kobayashi M, Farrar JL, Gierke R, et al. Use of 15-Valent pneumococcal conjugate vaccine and 20-valent pneumococcal conjugate vaccine among U.S. adults: updated recommendations of the Advisory Committee on Immunization Practices – United States, 2022. MMWR Morb Mortal Wkly Rep 2022;71(4):109-117. [PMID: 35085226]
Lombardi F, Belmonti S, Fabbiani M, et al. Immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine versus the 23-valent polysaccharide vaccine in unvaccinated HIV-infected adults: A pilot, prospective controlled study. PLoS One 2016;11(6):e0156523. [PMID: 27258647]
Rodriguez-Barradas MC, Goulet J, Brown S, et al. Impact of pneumococcal vaccination on the incidence of pneumonia by HIV infection status among patients enrolled in the Veterans Aging Cohort 5-Site Study. Clin Infect Dis 2008;46(7):1093-1100. [PMID: 18444830]
Rodriguez-Barradas MC, Serpa JA, Munjal I, et al. Quantitative and qualitative antibody responses to immunization with the pneumococcal polysaccharide vaccine in HIV-infected patients after initiation of antiretroviral treatment: Results from a randomized clinical trial. J Infect Dis 2015;211(11):1703-1711. [PMID: 25538270]
Tetanus, Diphtheria, and Pertussis (Tdap) and Tetanus-Diphtheria (Td)
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 12: Tetanus, Diphtheria, and Pertussis and Tetanus-Diphtheria Vaccines Download PDF |
|
Trade Names |
|
Indications | All adult patients |
Administration |
Administer according to the CDC Adult Immunization Schedule: |
Revaccination | Td is usually given as a booster dose every 10 years, but it can also be given earlier after a severe and dirty wound or burn. |
Comments | Covered by the Vaccine Injury Compensation Program |
Abbreviations: CDC, Centers for Disease Control and Prevention; Tdap, tetanus, diphtheria, and pertussis; Td, tetanus-diphtheria. |
Discussion: The recommendations for Tdap and Td vaccination of adults with HIV are the same as for those in the general population [CDC 2023; Thompson, et al. 2021]. The safety and efficacy of vaccination with Tdap has not been studied in this population [Crum-Cianflone and Wallace 2014].
References
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS 2014;28(8):397-410. [PMID: 25029589]
Thompson MA, Horberg MA, Agwu AL, et al. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2021;73(11):e3572-e3605. [PMID: 33225349]
Varicella
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 13: Varicella Vaccine Download PDF |
|
Trade Names | Varivax |
Indications | For patients with CD4 counts ≥200 cells/mm3 who do not have evidence of immunity to varicella |
Administration |
Administer according to the CDC Adult Immunization Schedule: |
Revaccination | None |
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; IgG, immunoglobulin G; MMR, measles, mumps, rubella; VariZIG, varicella zoster immune globulin. |
Discussion: Patients with HIV who have CD4 counts ≥200 cells/mm3 and do not have immunity to varicella should be vaccinated according to Centers for Disease Control and Prevention guidelines for all adults, with 2 doses of single-antigen varicella vaccine administered 4 to 8 weeks apart or a second dose if they have received only 1 dose. Varicella vaccination contains live virus and is contraindicated for patients with CD4 counts <200 cells/mm3 because of the risk of disseminated disease [CDC 2023; Marin, et al. 2007; Kramer, et al. 2001]. Data on the effectiveness of varicella vaccination among adults with HIV are lacking, but vaccination has been shown to be effective among children with HIV [Crum-Cianflone and Wallace 2014; CDC 2012; Marin, et al. 2007].
Because of the possibility of severe disease in individuals with HIV, clinicians should verify varicella immunity. Birth before 1980 is not accepted as evidence of immunity in immunocompromised individuals; anti-varicella immunoglobulin G screening should be performed in patients with HIV who have no known history of chickenpox or shingles [Marin, et al. 2007]. Post-vaccination serologic testing to determine immune response is not recommended because commercially available assays lack sensitivity and may give false-negative results [Marin, et al. 2007]. Clinical disease due to varicella after vaccination, a very rare event, should be treated with acyclovir [DHHS 2022; Marin, et al. 2007]. If household members or close contacts develop a rash after vaccination, people with HIV should avoid contact with the affected individual until after the rash resolves [Kroger, et al. 2022; Marin, et al. 2007]. Because they can interfere with vaccine virus replication and decrease vaccine effectiveness, all antiherpetic agents should be avoided for at least 24 hours before varicella vaccination through 14 days after [Kroger, et al. 2022; CDC(b) 2021]. If post-exposure varicella zoster immune globulin is given, clinicians should wait ≥5 months before varicella vaccination [DHHS 2022; Kroger, et al. 2022; CDC 2006].
References
CDC. A new product (VariZIG) for postexposure prophylaxis of varicella available under an investigational new drug application expanded access protocol. MMWR Morb Mortal Wkly Rep 2006;55(8):209-210. [PMID: 16511443]
CDC. FDA approval of an extended period for administering VariZIG for postexposure prophylaxis of varicella. MMWR Morb Mortal Wkly Rep 2012;61(12):212. [PMID: 22456121]
CDC(b). Varicella. 2021 Sep 20. https://www.cdc.gov/vaccines/pubs/pinkbook/varicella.html [accessed 2022 Oct 21]
CDC. Adult immunization schedule. 2023 Feb 17. https://www.cdc.gov/vaccines/schedules/hcp/adult.html [accessed 2023 Feb 22]
Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS 2014;28(8):397-410. [PMID: 25029589]
DHHS. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. 2022 Sep 28. https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection/whats-new-guidelines [accessed 2022 Sep 30]
Kramer JM, LaRussa P, Tsai WC, et al. Disseminated vaccine strain varicella as the acquired immunodeficiency syndrome-defining illness in a previously undiagnosed child. Pediatrics 2001;108(2):E39. [PMID: 11483849]
Kroger A, Bahta L, Hunter P. General best practice guidelines for immunization. Best practices guidance of the Advisory Committee on Immunization Practices (ACIP). 2022 Mar 15. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/downloads/general-recs.pdf [accessed 2022 Oct 20]
Marin M, Guris D, Chaves SS, et al. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2007;56(Rr-4):1-40. [PMID: 17585291]
McLean HQ, Fiebelkorn AP, Temte JL, et al. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013;62(Rr-04):1-34. [PMID: 23760231]
Zoster
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
Table 14: Zoster Vaccine Download PDF |
|
Trade Names | Shingrix: RZV, adjuvanted |
Indications | Medical Care Criteria Committee recommendation: Patients with HIV ≥18 years old (A2) |
Administration |
|
Comments |
|
Abbreviations: CDC, Centers for Disease Control and Prevention; IgG, immunoglobulin G; RZV, recombinant zoster vaccine; ZVL, zoster vaccine live. |
Discussion: People with HIV are at increased risk of zoster (initial episodes and recurrences) at all stages of HIV disease; the risk is greater among those with severe immunodeficiency and lower CD4 cell counts [Blank, et al. 2012; Harpaz, et al. 2008]. Zoster vaccination may reduce disease burden in individuals with HIV; however, data on the use of zoster vaccine among adults with HIV are limited.
The Advisory Committee on Immunization Practices recommends 2 doses of recombinant zoster vaccine (RZV; brand name Shingrix) to prevent herpes zoster in adults ≥19 years old who are immunosuppressed [Anderson, et al. 2022]; the previous recommendation was for vaccination of adults ≥50 years old [Dooling, et al. 2018]. On December 1, 2021, the Medical Care Criteria Committee updated its recommendation as well: Adults with HIV ≥18 years old should receive 2 doses of RZV, administered 2 to 6 months apart. RZV provides strong protection against shingles and post-herpetic neuralgia. There is no specific data on immunogenicity in people with HIV; however, superior efficacy and longer duration of seroprotection have been demonstrated in the elderly [Anderson, et al. 2022; Dooling, et al. 2018]. As of November 2020, the live, attenuated zoster vaccine (ZVL; brand name Zostavax) is no longer available for use in the United States.
Anti-varicella immunoglobulin G screening should be performed in patients with no known history of chickenpox or shingles [Marin, et al. 2007], and patients with a negative titer should be vaccinated for varicella if their CD4 count is >200 cells/mm3 as an initial step, and the series should be completed before zoster vaccination. There is no recommendation for post-vaccination serologic testing to determine immune response [Harpaz, et al. 2008].
References
Anderson TC, Masters NB, Guo A, et al. Use of recombinant zoster vaccine in immunocompromised adults aged >/=19 years: recommendations of the Advisory Committee on Immunization Practices – United States, 2022. MMWR Morb Mortal Wkly Rep 2022;71(3):80-84. [PMID: 35051134]
Blank LJ, Polydefkis MJ, Moore RD, et al. Herpes zoster among persons living with HIV in the current antiretroviral therapy era. J Acquir Immune Defic Syndr 2012;61(2):203-207. [PMID: 22766968]
Dooling KL, Guo A, Patel M, et al. Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. MMWR Morb Mortal Wkly Rep 2018;67(3):103-108. [PMID: 29370152]
Harpaz R, Ortega-Sanchez IR, Seward JF. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2008;57(Rr-5):1-30; quiz CE32-34. [PMID: 18528318]
Marin M, Guris D, Chaves SS, et al. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2007;56(Rr-4):1-40. [PMID: 17585291]
All Recommendations
Reviewed and updated: Christine Kerr, MD, and Mary Dyer, MD, with the Medical Care Criteria Committee; May 9, 2023
ALL RECOMMENDATIONS: IMMUNIZATIONS FOR ADULTS WITH HIV |
Immunizations
COVID-19 Vaccine
Mpox Vaccine
——— |
Guideline Information and Updates
Guideline Information | |
Intended users | New York State clinicians who provide primary care to adults with HIV |
Last reviewed and updated | May 9, 2023 |
Lead authors | Christine Kerr, MD, and Mary Dyer, MD |
Original publication | December 2019 |
Writing group | Joseph P. McGowan, MD, FACP, FIDSA; Steven M. Fine, MD, PhD; Samuel T. Merrick, MD; Asa E. Radix, MD, MPH, PhD, FACP, AAHIVS; Lyn C. Stevens, MS, NP, ACRN; Christopher J. Hoffmann, MD, MPH; Charles J. Gonzalez, MD |
Committee | Medical Care Criteria Committee |
Developer and funding | New York State Department of Health AIDS Institute (NYSDOH AI) |
Development | See Guideline Development and Recommendation Ratings, below. |
Updates | |
May 9, 2023 |
Marguerite A. Urban, MD: The MenB vaccination recommendations are now separated into 2 tables: Table 9a: MenB Vaccine for Prevention of MenB Infection and Table 9b: MenB Vaccine for Prevention of Gonorrhea, and the dosing interval for vaccination to prevent gonorrhea has been clarified. |
April 18, 2023 |
Writing Group:
|
December 15, 2022 | Writing Group: Sections on COVID-19, hepatitis B virus, and pneumococcal vaccinations were updated. Updates were made throughout, as needed, to align with updated recommendations from the sources noted in each particular section. |
Guideline Development: New York State Department of Health AIDS Institute Clinical Guidelines Program | |
Developer | New York State Department of Health AIDS Institute (NYSDOH AI) Clinical Guidelines Program |
Funding Source | NYSDOH AI |
Program Manager |
Clinical Guidelines Program, Johns Hopkins University School of Medicine, Division of Infectious Diseases. See Program Leadership and Staff. |
Mission | To produce and disseminate evidence-based, state-of-the-art clinical practice guidelines that establish uniform standards of care for practitioners who provide prevention or treatment of HIV, viral hepatitis, other sexually transmitted infections, and substance use disorders for adults throughout New York State in the wide array of settings in which those services are delivered. |
Expert Committees |
The NYSDOH AI Medical Director invites and appoints committees of clinical and public health experts from throughout NYS to ensure that the guidelines are practical, immediately applicable, and meet the needs of care providers and stakeholders in all major regions of NYS, all relevant clinical practice settings, key NYS agencies, and community service organizations. |
Committee Structure |
|
Conflicts of Interest Disclosure and Management |
|
Evidence Collection and Review |
|
Recommendation Development |
|
Review and Approval Process |
|
External Reviewers |
|
Update Process |
|
Recommendation Ratings Scheme | |||
Strength | Quality of Evidence | ||
Rating | Definition | Rating | Definition |
A | Strong | 1 | Based on published results of at least 1 randomized clinical trial with clinical outcomes or validated laboratory endpoints. |
B | Moderate | * | Based on either a self-evident conclusion; conclusive, published, in vitro data; or well-established practice that cannot be tested because ethics would preclude a clinical trial. |
C | Optional | 2 | Based on published results of at least 1 well-designed, nonrandomized clinical trial or observational cohort study with long-term clinical outcomes. |
2† | Extrapolated from published results of well-designed studies (including nonrandomized clinical trials) conducted in populations other than those specifically addressed by a recommendation. The source(s) of the extrapolated evidence and the rationale for the extrapolation are provided in the guideline text. One example would be results of studies conducted predominantly in a subpopulation (e.g., one gender) that the committee determines to be generalizable to the population under consideration in the guideline. | ||
3 | Based on committee expert opinion, with rationale provided in the guideline text. |